
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2003; 41:765–788 (DOI: 10.1002/�d.470)

Numerical simulation of thermo-solutal-capillary migration of
a dissolving drop in a cavity

Edmondo Bassano∗;†
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SUMMARY

In the present paper the thermo-solutal-capillary migration of a dissolving liquid drop, composed by a
binary mixture having a miscibility gap, injected in a closed cavity with di�erentially heated end walls,
is studied. The main goal of the analysis is to clarify if and how the drop migration is a�ected by the
dissolution process. The numerical code is based on a �nite volume formulation. A level-set technique
is used for describing the dynamics of the interface separating the di�erent phases. A thermodynamic
constraint �xes the concentration jump between the interface sides. This jump, together with that of
the concentration normal derivatives, in turn de�nes the entity of the dissolution cross-�ow through the
interface and the interface velocity relative to the �uid. Since the jump singularity of normal derivatives
cannot be easily molli�ed, while retaining the necessary accuracy, a scheme for the species equation is
elaborated that allows sharp jumps and has subcell resolution. Steady migration speeds are determined
after the start-up phase for di�erent radii and temperature di�erences. The results will be used for the
preparation of a sounding rocket space experiment. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Processes based on phase changes are of primary interest in physics and engineering. This
explains the interest of the scienti�c community on miscibility gap [1, 2] as well as closely re-
lated phenomena. A search on the IDEA database (http://mgravity.itsc.uah.edu/ideasearch.html)
using the ‘miscibility gap’ keyword returned over 70 items of experiments �own in micro-
gravity conditions. The experiments covered more than two decades and �ew on almost every
kind of microgravity platform. A miscibility gap in the liquid phase is found in many di�er-
ent systems: metal alloys, binary mixtures of organic liquids, sulphides and silicates systems,
glasses and liquid crystals and many of industrial applications and processes are based on
miscibility gap and related phenomena, an account can be found in Bassano (MARS internal
report ‘Welcome/FR-001’, 2000). The dissolution due to a miscibility gap and its in�uence
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Figure 1. Cyclohexane–methanol phase diagram.

on capillary migration of drops can be pro�tably studied in microgravity, being strongly af-
fected, on Earth, by buoyancy due to both di�erent densities of the mixture components and
Boussinesq e�ects.
The system under study is composed by two liquid binary mixtures of the same components

having a miscibility gap, i.e. coexisting in a given range of temperature in two di�erent phases
at di�erent concentrations. A drop of a pure component is injected in a matrix of the other
component, that �lls a closed rectangular cavity and has a linearly strati�ed temperature. The
upper and lower walls are held at constant di�erent temperatures. The system is supposed to
be in absence of gravity, therefore only interfacial tension gradient e�ects occur. The drop
migrates towards the hot upper wall because of the solutal and thermal Marangoni e�ect
and dissolves because the system is in a region of the phase diagram where it separates
continuously into two phases, according to the equilibrium curve.
The couple of liquids exhibiting a �rst order phase transition used for the simulations

is cyclohexane (C6H12)–methanol (CH3OH). This couple has been selected because: (i) the
components have nearly the same density; (ii) are transparent, allowing either the direct visu-
alization of the drop migration either the use of optical diagnostics devices; (iii) their mixture
has a critical temperature of 45:7◦C, slightly larger than the ambient one. Theoretical models
for calculating the equilibrium curve are available and are particularly helpful for ideal so-
lutions, but di�erences in atomic radius and in bonding are responsible for eventually large
discrepancies between real and ideal behaviour [1], thus the cyclohexane–methanol equilib-
rium phase diagram, shown in Figure 1, is given by points. It is supposed that equilibrium
always occurs at the binodal line.
Some of the restrictive hypotheses largely adopted in the classical theoretical and numerical

literature on thermo-capillary migration of bubbles and drops [3–8] are removed in the present
paper. The �ow develops in a cavity and not in an unbounded medium so that the boundary
conditions for the external phase are correctly imposed. This circumstance avoids the problem
of relating experimental results to simulations with suitably adapted boundary conditions,
reproduces the exact �ow topology in which the particles paths do not come from and go
to in�nity and are instead folded over the immersed phase, and allows one to evaluate wall
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e�ects (drop diameter of the same order of the smaller cavity characteristic length, drop near
the wall). The simulation is unsteady and models the start-up phase of the drop that can
change its shape freely and is not constrained to remain spherical during the migration. The
interface is crossed by mass. The scheme for the specie equation allows one to treat �nite
jumps and the average based �ux reconstruction on variable length stencils is not constrained
to be �rst order accurate in cells where a jump occurs.
In recent years several di�erent methods for solving multiphase �ows were elaborated,

among them we recall marker and cells [9], volume of �uid [10], front tracking [11], boundary
integral [12]. An account of the more extensively used numerical methods, issues and problems
related to free surface and two-phase �ows can be found in Reference [13]. Nevertheless the
severe limitations of all these methods did not match all the constraints of the present problem.
A �rst milestone work, on which several numerical approaches would successively rely, was

the work of Brackbill et al. [14]. Here the authors introduced a formulation of multiphase
�ows equations in terms of a unique system of motion equations holding in the whole domain,
expressed the interface normal momentum boundary condition in the case of constant surface
tension as a momentum production term, and �nally used a color function to identify di�erent
phases.
Their work and the projection method of Chorin [15] and Temam [16], subsequently inspired

Bell and Marcus [17], in formulating the Hodge-like projection for variable density incom-
pressible multiphase �ows. Later on several authors upgraded these formulations in terms of
accuracy. Extension to non-constant surface tension was made by Haj-Hariri et al. [8].
In their landmark paper Osher and Sethian [18] introduced the level set method for mod-

elling fronts, that, treating implicitly the moving boundary, allowed front topological changes
without elaborated machinery or failure of many other front dynamics description methods.
From that moment, level set methods have been applied in all �elds. The �rst application to
multiphase �ow is of Sussman et al. [19]. Phase changes of pure substances were taken into
account by Beux et al. [20] and, in the context and front tracking methods, by Tryggvason
et al. [21], Brackbill et al. [22] and Esmaeeli et al. [23]. The same authors [24, 25] studied
also multiphase �ow of mixtures.
In the present paper the drop interface evolution is modelled by the level set technique,

in which the interface is represented by the embedding of the zero level set of a scalar
function de�ned within the whole computational domain. The present simulations are part
of the preparation of an experiment on the thermo-solutal-capillary migration of a dissolving
drop, which will be �own onboard sounding rocket MAXUS 5 in spring 2003 [26].

2. THE LEVEL SET METHOD

The level set method for advancing fronts was proposed by Osher and Sethian [18]. The
front, in our case the interface �(t), is represented at each instant of time t by the zero level
set of a smooth scalar function �. Let x(t) be a representation of �(t) and Vi(t)= ẋ(t). The
evolution equation for � is described by the scalar equation of Hamilton–Jacoby type

�t + Vi · ∇�=�t + Vin|∇�|=0 (1)

for this equation states that, if at the initial time � is constant along the curve � moving in
normal direction with speed Vin = n ·Vi, it will be constant there also at later times. In the
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second equality above the unit vector n normal to �, � being constant along it, was written
as n=∇�=|∇�|. It is assumed that �¡0 inside the drop and �¿0 outside, so, according to
our de�nition, n points outside the drop. Note that the dynamics of � is fully described by
Vin only. In order to follow the evolution of the front it is necessary to extend the normal
velocity Vin outside the interface. In cases in which the �uid velocity V is continuous across
the front, the evolution equation for � can be written as the hyperbolic transport equation

�t + V · ∇�− Vnri|∇�|=0 (2)

where Vnri =Vn − Vin is the �uid normal velocity relative to the interface and Vn =V · n. The
expression of Vnri for the present problem will be given in the next section. Since Vnri is
de�ned on the interface only it must be suitably extended o� the interface. On the contrary,
the �rst term is naturally extended.

3. MODEL ASSUMPTIONS

The cavity containing the drop and the external liquid matrix is rectangular. The width of the
cavity is indicated by L, the height of the cavity by h. A �lling ratio F is de�ned as F =R2=hL.
An analogous simulation in cylindrical geometry is under way and will be the object of a
forthcoming paper. In the following ∇ indicates the nabla operator, T the temperature, p
the average normal stress, � the density, c the concentration, � the thermal conductivity, �
the dynamic viscosity, � the kinematic viscosity, D the di�usion coe�cient, cs the speci�c
heat coe�cient, � the thermal di�usivity, � the interface tension. The transport properties,
the speci�c heat, the density are constant in each phase. The surface phase is modelled as
a pure interface. The interface tension is assumed to depend on temperature and equilibrium
concentrations as �=�(T; c+(T ); c−(T )). Since the equilibrium concentrations are functions
of the temperature, one can expand the interface tension by the chaining rule in terms of the
temperature only. Expanding � in Taylor series and neglecting higher order terms one has

�=�0 + [�T0 + �c+0c+T0 + �c−0c
−
T0](T − T0)=�0 + �̂T0(T − T0) (3)

The critical point being singular, a regular truncated Taylor series expansion holds only for
T0 �=Tcr, where (dc±=dT )cr→∓∞. It must be noted, however, that:
(i) �cr = 0, since, at the critical point, the di�erent phases merge in a single phase,
(ii) a singular behaviour occurs for temperature di�erences T −Tcr of the order of 10−3◦C,

when �uctuations are not negligible and critical point phenomena become predominant.

The latter situation can eventually occur at the latest stages of the drop rise, if the critical
temperature is reached near the drop surface. The above expression for the interface tension
holds outside a small neighbourhood of the critical temperature as

�=�0 + �̂T0(Tcr − T0) + �̂T0(T − Tcr)= �̂0 + �̂T0(T − Tcr) (4)

Enforcing the interface tension vanishing at the critical point, one has �= �̂T0(T−Tcr), �̂0 = 0.
According to experimental data [26] �̂T0 is negative.
Since cyclohexane and methanol have nearly the same densities and the present problem

is related to microgravity conditions, the corresponding density di�erence is neglected in the
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continuity and momentum balance equations and boundary conditions. Buoyancy e�ects due
to density variations in presence of gravity are out of the scope of the present paper, but it
will be considered in a forthcoming work.
In jump form the continuity equation at the interface reads

[�(Vn − Vin)]= 0 (5)

where [f]=f+−f− is the jump operator and the superscript ‘+’ indicates the domain towards
which n points. Mass conservation implies the continuity of the mass �ow rate through the
interface ṁ=�a(Van −Vin) (a=1; 2). Due to the hypothesis �1 =�2 the normal component of
the velocity is continuous, but di�ers from the interface normal speed. The tangential speed
Vs and the temperature T are assumed to be continuous at interface, so the �uid speed is also
continuous and Equation (2) holds. The partial mass balance equation in jump form reads

[ṁc − n ·�D∇c]= 0 (6)

and the mass �ow rate is given by

ṁ=[n ·�D∇c]=[c] (7)

where, according to the equilibrium curve, the local concentration jump is function of the
temperature. Being Vnri = ṁ=�a the level set equation reads

�t + V · ∇�− |∇�|ṁ=�a=0 (8)

4. BOUNDARY AND INITIAL CONDITIONS

For t¿0 the velocity vanishes at the cavity walls; the top and bottom walls are held at constant
di�erent temperatures Tt and Tb respectively, with Tt¿Tb; the lateral walls are adiabatic (i.e.
@T=@n=0); no di�usion of species takes place through the cavity walls (i.e. @c=@n=0 along
the whole boundary). At the initial time the velocity is zero everywhere, the temperature is a
linear function of the vertical co-ordinate, the drop is circular with radius R and its centre is
located on the symmetry axis at an ordinate y0. At the initial time the internal and external
phases are composed of the single pure components, i.e. c=1 inside the drop and c=0
outside; along the inner and outer drop faces the concentrations are those prescribed by the
equilibrium curve at the local temperature. The initial concentration discontinuity between the
inner [outer] drop surface and the internal [external] phase is smoothed in few cells by a
weighted complementary error function. The initial and boundary conditions are sketched in
Figure 2.

5. THE MOTION EQUATIONS

Following Smereka [27] and Sussman et al. [19], the motion equations have been reformulated
by de�ning the dependent variables in the whole domain in terms of the Heavyside step
function H (�), letting f=(fext − fint)H + fint and expressing the interface source terms as
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Figure 2. Problem’s boundary and initial conditions.

volume source terms thanks to the equality
∫
@�
f d�=

∫
�
f|∇�|	(�) d�=

∫
�
fn · ∇H d� (9)

where ∇H (�)=∇�	(�), 	(�) is the Dirac delta function, � is a volume neighbourhood of
the zero level set �, i.e. a strip centred on �. In the present case the non-dimensional motion
equations can be written as

∇ ·V =0 (10)

Vt +∇p=∇ · [�(∇V + (∇V )T)=Re − VV ]
+ [(T − Tcr −WeT=We)kn−∇sT ](n · ∇H)=WeT (11)

(csT )t +∇ · [csTV − �∇T=Ma]= 0 (12)

ct +∇ · [Vc −D∇c=Re Sc]= 0 (13)

�t +∇ · (V�)− |∇�|[Dn · ∇c]=Re Sc[c]= 0 (14)
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where the superscript ‘T ’ indicates transposition, ∇s =∇−n@=@n is the surface nabla operator,
the non-dimensional density is omitted being uniformly equal to one, the continuity equation
multiplied by � has been added to the level equation. The non-dimensional characteristic
Schmidt Sc, Reynolds Re, Marangoni Ma, Weber We, thermo-solutal Weber WeT numbers are
given by

Sc= �r=Dr Re=RVr=�r Ma=RVr=�r We=V 2r �rR=�̂0 WeT =V 2r �rR=|�̂T0|Tr (15)

where the reference quantities are

pr =�rV 2r ; Vr = |�̂T0|Tr=�r; Lr =R; Tr =(Tt − Tb)R=h; tr =R=Vr (16)

and csr ; Dr; �r; �r; �r are those of the external �uid. One has WeT =Re and Ma=PrRe=Pe,
i.e. the Marangoni number is equal to the Peclet number Pe. Terms weighted by Mach and
Eckert numbers are neglected. The sign, Heavyside and Dirac delta functions were molli�ed,
respectively as

�¡− 
 sgn
(�)= − 1; �¿
 sgn
(�)=1; |�|6
; sgn
(�)=�=
+ sin(��=
)=� (17)

H
(�)= [1 + sgn
(�)]=2; 	
(�)=dH
=d� (18)

with 
=m�x; m=3. The drop volume and centre of mass ordinate are given by the following
integrals with m=1=2:

v=
∫ ∫

(1−H
) dx dy ycm =
(∫ ∫

y(1−H
) dx dy
)
=v (19)

The trace k of the curvature tensor, is calculated with second order centred formulae, in terms
of the level-set function derivatives as

k=(�xx�2y − 2�xy�x�y + �yy�2x)=(�2x + �2y)3=2 (20)

6. THE NUMERICAL SOLUTION METHOD

The system of motion equations in conservative form is solved by a �nite volume approach
on a staggered grid. The Cartesian grid size is the same in both the co-ordinate directions;
pressure, level set function, temperature and concentration are cell centred and the velocity
components are staggered. Convective �uxes are evaluated by upwind biased three points
formulae with weights given in Shu [28], di�usive �uxes by second order centred formulae.
The ordinary projection method of Chorin [15] and Temam [16] is used to determine the
velocity �eld. The pressure Poisson equation is solved by a SOR (successive over relaxations)
algorithm. The space semi-discretized motion equations are advanced in time by a �rst order
Euler explicit time stepping.

7. THE REDISTANCING ALGORITHM

Functions d such that |∇d|=1 everywhere are called distance functions. Accuracy requires
that the level set function � had this property. Even if one initialises � as a distance function,
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� can smear out or steep. To ensure that � remains a distance function at least near the
interface during its evolution, Sussman et al. [19] proposed to reinitialize it at each step by
solving the hyperbolic equation to steady state

d�=sgn(�)(1− |∇d|); d(x; 0)=�(x; t) (21)

where � plays the role of a parameter. By rewriting the above equations as

d� + sign(�)
∇d
|∇d| · ∇d=sign(�) (22)

or

d� + sign(�)
(
1− 1

|∇d|
)
nd · ∇d=0 (23)

one can see that, for the characteristics depart from the interface, the solution tends to the
steady state near the interface in few steps since 
=�� time steps are necessary to have
|∇d|=1 in a neighbourhood of the interface of thickness 
.
The redistancing problem is of Hamilton–Jacoby type

d� +H (x; y; �; d; dx; dy)=0; d(x; y; 0)=�(x; y; t) (24)

A semi-discretized approach is used to solve Equations (24). For the space discretization
the general Godunov numerical �ux function proposed by Osher and Shu [30] is used (the
independent variables are omitted for brevity, but their handling is straightforward)

ĤG(u+; u−; v+; v−)= ext
u∈I(u− ;u+)

ext
v∈I(v− ;v+)

H (u; v) I(a; b)= [min(a; b);max(a; b)] (25)

ext = min
a6u6b

a6b= max
b6u6a

a¿b

that, in the present case, can be easily calculated, as shown by Jiang and Peng [31], by

ĤG(u+; u−; v+; v−)
= sign(�)(

√
[max((u+)−; (u−)+)]2 + [max((v+)−; (v−)+)]2 − 1); �¿0

= sign(�)(
√
[max((u+)+; (u−)−)]2 + [max((v+)+; (v−)−)]2 − 1) �¡0 (26)

where u±=d±x ; v
±=d±y ; (a)

+ = max(a; 0); (a)−= − min(a; 0) and the superscripts ± of the
derivatives dx; dy indicate the upwinding direction. Fifth order WENO (Weighted Essentially
Non-Oscillatory) schemes of Jiang and Shu [32] is used for the calculation of the deriva-
tives. Third order TVD (total variation diminishing) Runge–Kutta algorithm of Gottlieb and
Shu [33] is used for time integration.
In order to ensure the necessary accuracy of the curvature and to enhance volume conser-

vation during redistancing, the sign function is molli�ed, as proposed in Peng et al. [29]

sgn(�)=�=
√
�2 + (|∇d|�s)2 (27)

This formula prevents errors due to node crossing of the zero level and adapts its support
according to the local value of the gradient modulus. The volume preservation algorithm of

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:765–788



MIGRATION OF A DISSOLVING LIQUID DROP 773

Sussman et al. [34] is, instead, avoided since it deteriorates the curvature accuracy as noted
by Keck [35] and con�rmed by numerical tests.

8. THE OFF-INTERFACE EXTENSION

Curvature and temperature, occurring in normal and tangential momentum production terms

((T − Tcr)=WeT − 1=We)k|∇�|	(�)n − (∇sT=WeT)|∇�|	(�) (28)

and the production term of the level set equation

|∇�|ṁ=�a (29)

have been extended o� the interface, following Peng et al. [29], then their support is made
compact by weighting the extended distributions by a square wave-like �lter [29]. Numerical
experiments revealed that this procedure greatly enhances the simulation accuracy. If the
function f(�) is not constant in normal direction near the zero level set, the maximum
of the molli�ed term f(�)	
(�) is not located at 0 on the zero level set and di�ers from
f(0)	
(0), this can lead to appearance of spurious vortical structures within the interface strip.
Analogously extending o� temperature makes vanishing the normal temperature derivative and
allows a more accurate evaluation of the tangential stresses contribution. The extension o� the
interface of the generic quantity f is performed by solving the following Hamilton–Jacoby
equation

f� + sign(�)n · ∇f=0; f(x; 0)=f(x; t) (30)

At the steady state the function f is constant in the direction of n (in which � varies)

n · ∇f=0; ∇� · ∇f=0 (31)

and is equal to the value it has on the zero level set. If f is weighted by a (symmetrically)
molli�ed Dirac function the extrema of the product are all located on the zero level set. If,
instead, f is locally monotone around the zero level set the extrema do not fall on it. Extending
f o� the interface amounts to zeroing its normal derivative so that the gradient ∇f calculated
after the extension retains the tangential contribution only. The solution of Equation (30) is
performed using formulas similar to those of the previous section with minor modi�cations.

9. CONCENTRATION FIELD CALCULATION

The normal velocity relative to the interface depends on the di�erence between the normal
derivatives of the concentration and on its jump. This term cannot be easily calculated by
means of distributions while retaining the necessary accuracy. In order to evaluate the in-
terface speed an algorithm having a subcell resolution was conceived, following the idea of
Harten [36]. The concentration cells intersected by the interface are splitted into two subcells
with di�erent averages. From a side the scheme allows to treat �nite jumps, from the other
the average reconstruction on cells where a jump occurs is not constrained to be only �rst
order accurate.
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Figure 3. Cell generic partitions.

To locate the interface, the vertex values of the cell centred level set function are calculated
by a four point average. The intersection points of the zero level set with the cell edges
are determined by linear interpolation along the edges. The interface is represented by the
segment joining the two points on the cell boundary. The di�erent generic positions of the
interface segment within the cell and the two corresponding subcells are shown in Figure 3.
The temperature at intersection points is calculated by a linear interpolation of the vertex
values along edges, then the concentration in the same points on each side of the interface is
determined by the equilibrium curve.
The cell average increment in each time step is obtained calculating the �uxes across the

cell boundary; subcell average increment per time step is obtained evaluating the �uxes across
the interface and the portion of the cell boundary bounding the subcell. The normal deriva-
tives to the interface are calculated by a non-constant stencil, average based reconstruction
along the normal direction, the stencil fully lying in the external or internal region as appro-
priate. Stencils extending from the interface in normal direction are truncated if they cross
the interface at the opposite side. Two versions of the algorithm have been considered. One
performing a truly reconstruction in normal direction, the other performing the reconstruction
in the co-ordinate and diagonal directions nearest to the oriented normal and combining them
to obtain the relevant quantities along the normal. The velocity on the interface is calculated
by imposing the vanishing of mass �ux across the subcell boundary. In a similar way, the
convective and di�usive normal �uxes along cell edges crossed by the interface are calculated
by evaluating the �uxes through each edge portion by a non-constant stencil, upwind biased,
average based reconstruction, discussed below, whose stencil lies in the appropriate external
or internal region.
The �uxes across the cell edges not crossed by the interface are evaluated by an upwind

biased, average based, reconstruction on a three cells stencil. The extrema of the reconstruction
subintervals are the cell boundaries if the stencil is not crossed by the interface. In the case
in which the interface crosses one of the cells of the three-point stencil but does not cross
the cell edge where the �ux is reconstructed, the stencil may be limited by one or two
interface points. If the interface intersects the line connecting the stencil cell centres in the
reconstruction direction, the stencil subinterval is limited by the intersection point of this line
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Figure 4. Interface location and reconstruction stencil in contiguous cell.

and the interface segment otherwise the reconstruction subinterval extrema are on the cell
boundary. Since only averages from one side of the interface may enter in the reconstruction,
the number of considered averages can be smaller than three. Di�usive �uxes are calculated
in terms of the derivative of the reconstruction polynomial evaluated on the cell edge. The
possible interface segments disposition in three contiguous cells and the corresponding stencil
supports (in grey) for the �ux reconstruction through a cell wall non intersected by the
interface (indicated by an arrow), are shown in Figure 4. Here the velocity comes from right,
opposed direction upwinding is treated similarly. In the case in which the interface crosses
the cell edge on which the �ux is being reconstructed, the �uxes across these edge portions
are calculated in a way similar to the one discussed before, but now the points bounding the
reconstruction subintervals are located along the normal to the edge portion passing through
its centre. Various reconstructions of mixed type on variable stencils, involving averages and
known interface point values, have been tested but they show to be more prone to non-
monotone behaviour (oscillations) than average based ones.
For the subcell dimensions vary in a time step due to the interface motion, the time in-

crement of the subcell averages is computed by a Lagrangian balance. The �rst order time
discretized subcells and cell balances read

vn+1s �cn+1s − vns�cns =−
[∫

@vte
ne ·

(
�cV − �D

Re Sc
∇c

)
d@v

]n
�t − fns |g|Sl�t (32)
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vn+1c �cn+1c − vnc�cnc =−
[∫

@vce
ne ·

(
�cV − �D

Re Sc
∇c

)
d@v

]n
�t − fnc |g|Sl�t (33)

vn+1�cn+1 − vn�cn=−
[∫

@ve
ne ·

(
�cV − �D

Re Sc
∇c

)
d@v

]n
�t (34)

where the overbar indicates the average, the subscripts ‘s’ and ‘c’ indicate a subcell and
its complement respectively, the subscript ‘e’ a part of the cell boundary and ne the cell
exiting normal unit vector. The factor |g|= |1±dnSl=4At | [|g|=1] for triangular [quadrilateral]
subcells, where Sl and At are the interface segment length and the area of the subcell at time
n, dn= |Vn; int|n�t and the sign + [−] is used for Vint · ns¿0 [¡ 0]. The �uxes are given
by �fs= − �fc= ± f± for ne= ± ns, where f±=(ṁc − �Dcne =Re Sc)±. The product |g|Sl
approximates the volume spanned by the interface in a time step in the hypothesis that it
moves normally to itself. A better approximation can be achieved by inserting in the above
balances the volume variation vn+1s; c − vns; c directly.
Once the product vn+1s �cn+1s has been determined, since vn+1s can be calculated from �n+1,

one can recover the mass fraction average for unit volume as

�cn+1s = vn+1s �cn+1s =vn+1s (35)

The average �cn+1c in the complementary subcell, of volume vn+1c , can be obtained combining
the balance in the subcell with the one of the entire cell

vn+1c �cn+1c = v�cn+1 − vn+1s �cn+1s vn+1c = v− vn+1s �cn+1c = vn+1c �cn+1c =vn+1c (36)

Inspired by Almgren et al. [37], strong stability constraints coming from very small subcell
dimensions, that are in some sense generic, are overcame by letting the subcell average equal
to the mean value of the concentrations in the extrema of the interface segment bounding the
subcell taken on the proper side.
Ad hoc structures are de�ned to manage quantities and variables of cells intersected by the

interface. Particular care must be used at each time step in rede�ning structures and data when
the interface enters or leaves a cell and when a subcell changes is kind (see Figure 3). Due to
the cumbersome management of such structures when a multi-level time integration is used,
time advancing was performed with an explicit �rst order Euler scheme. The implementation
of higher order TVD Runge–Kutta algorithms for the non-dissolving drop case is in progress.
The normal derivatives of the concentration at the inner and outer drop face are also used

in the calculation of the mass �ow through the interface as de�ned in Section 3. The mass
�ow, before being inserted in the production term of the level equation, was extended o� the
interface as discussed in the previous section.
It is perhaps useful to write down explicitly the local mass fraction �ux through the interface

f±=
1

Re Sc
1

(ce − ci)
[(
�D

@c
@n

)
e
ci −

(
�D

@c
@n

)
i
ce

]
(37)

and comparing it with the mass �ux

ṁ=
1

Re Sc
1

(ce − ci)
[(
�D

@c
@n

)
e
−
(
�D

@c
@n

)
i

]
(38)
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Evaluation of time step restrictions 

Evaluation of convective and 
diffusive fluxes of energy, velocity 

and, away from the interface, of 
concentration 

Evaluation of concentration 
convective and diffusive fluxes near 
the interface, through the edges of 

cells intersected by the interface and 
in direction normal and tangential to 

the interface (§ 9) 

Evaluation of mass flow through 
interface, interface speed, fluid 

velocity at interface 

Extension off the interface of mass 
flow, temperature, curvature and 

interface normal velocity 

Solution of Poisson equation for 
pressure and evaluation of the 

pressure contribution to velocity 
components 

Time update of temperature, 
velocity components and level-set 

function 

Time update of concentration within 
phases and in cells intersected by 

the interface (§ 9) 

Calculation of extra-cells values 
along the cavity boundary 

(boundary conditions) 

Redistancing of level-set function 

Evaluation of distributions 
depending on the level-set function 

Correction of the concentration field 
due to the interface motion (§ 9) 

Time <  
ending time 

end

yes 

Figure 5. Flow diagram summarizing the steps taken in the numerical algorithm.

The above formulas show that the terms occurring in ṁ and f± are the same but di�erently
weighted, thus the two �uxes may or may not have di�erent signs, depending on the actual
value of the weights. For the reader’s convenience, a �ow chart summarizing the steps taken
in the numerical algorithm is shown in Figure 5.

10. RESULTS

The grid is composed by 120× 240 squared cells. The cavity is 3 cm wide and 6 cm high. At
the initial time the drop centre is located on the symmetry axis. Very long execution times
prevent us from using more re�ned grids. The considered drop radii are R=0:25, 0.5 and
0:75 cm, and the corresponding �lling factor F is 3:472e-3, 1:388e-2, 3:125e-2, respectively.
The drop centre distance from the lower wall is 0:75 cm for the �rst two radii and 1 cm
for the last one. The lower wall temperature is 15◦C, the upper wall one is 55 or 65◦C.
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Table I. Main properties of Cyclohexane and Methanol. Dimensional quantities are in cgs
units. The interfacial tension gradient has been measured at MARS laboratory [26].

Cyclohexane C6H12 Methanol CH3OH fint=fext

� 0.779 0.779 1
� 0.980e-2 0.790e-2 0.806
� 1.258e-2 0.998e-2 0.806
� 1.248e4 2.020e4 1.619
cs 1.859e7 2.533e7 1.362
D 1.000e-5 1.000e-5 1
Pr 1.460e1 9.904 0.678
Sc 1.258e3 1.014e3 0.806
�T −1:000e-2 —

Table II. Steady migration velocities and non-dimensional parameters for di�erent runs.
Calculated speed values are compared to corresponding analytical values, determined by

Young et al. [3], in the case of Stokes �ow (Re�1).
R �T Re Ma Reint Maint Present [3]
(cm) (◦C) (cm/s) (cm/s)

0.25 40 34 493 42 414 0.043 0.255
0.25 50 42 617 52 519 0.056 0.319
0.5 40 135 1974 168 1661 0.065 0.510
0.5 50 169 2467 210 2076 0.076 0.638
0.75 40 304 4441 377 3737 0.038 0.765
0.75 50 380 5551 472 4672 0.052 0.957

Accordingly the imposed temperature di�erence �T is 40 or 50◦C, for a total of six di�erent
runs. Initially the temperature pro�le is linearly strati�ed, the drop is of pure methanol and
the surrounding matrix of pure cyclohexane, i.e. the methanol mass fraction is one in the drop
and zero outside, both phases are quiescent.
The �uid properties used for simulations are reported in Table I, where the subscript ‘int’

indicates internal quantities. Non-dimensional parameters and characteristic numbers depend-
ing only on �uid properties are also reported there. The internal and external Reynolds and
Marangoni numbers are listed, for each run, in Table II.
During the initial stage of motion the �uid is dragged along the drop surface by the interface

tension, the dragged �uid is warmer than the one inside the drop that remains trapped. The
external �uid, instead, creates a warm wake that extends behind the drop and entrains the cold
bottom region. This qualitative pattern is similar in all cases and is shown in Figure 6 for
R=0:75 and �T =50◦C, after t=4:7s from the staring time. The inner �ow reaches the drop
rear pole, starts to rise along the symmetry axis, reaches the front pole and then �ows back,
creating a ring vortex inside the drop, as shown f.i. in Figure 7 for the case R=0:5, �T =40◦C
at t=17:6 s. After a sudden acceleration, the drops start to move with a velocity that �rst
decreases with increasing the time and then increases towards a steady value as shown by the
slope of the drop centre position curves versus time shown in Figure 8. In the initial phase
of the ascent, larger drops are shrunk along the symmetry axis and then return to be nearly
circular, as shown in Figure 9 for the case R=0:75 and �T =50◦C where the drop shape
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Figure 6. Isotherms at t=4:7 s, for R=0:75 cm, �T =50◦C. The warmer �uid is dragged along the
interface by interface tension and entrains the cold bottom region of the cavity.

Figure 7. Isotherms (left) and concentration (right) �eld at t=17:6 s for R=0:5 cm, �T =50◦C.

is depicted for t=3:528 s and t=7:056 s. After the start-up phase the drops decelerate and
acquire a steady migration speed, as shown by Figure 8. During their ascent the drops slowly
warm up due to the large Prandtl numbers listed in Table I. Temperature and concentration
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Figure 8. Drop centre position versus time for R=0:25 (�), 0.5 (©), 0.75 ( ) cm and
�T =40 (white symbols), 50 (black symbols) ◦C.

Figure 9. Larger drops are shrinked at start-up. The two images refer to t=3:53 s (left)
and t=7:06 s (right) for R=0:75 cm, �T =50◦C.

�elds at t=41:2 s for �T =40◦C and R=0:25, 0.5, 0:75 cm are shown in Figure 10. The
steady migration velocity values are reported in Table II. As expected the velocity increases
with increasing the imposed temperature di�erence and with increasing the drop radius. The
present values are compared with the corresponding ones obtained by means of analytical
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Figure 10. Temperature (a, up) and concentration (b, down) �elds at t=41:2 s for �T =40◦C and
R=0:25 (left), 0.5 (centre), 0.75 (right) cm.

solution [3] holding for low Reynolds number �ows. Similarly to the case of thermo-capillary
bubble migration [6], the present values of the steady migration velocities are one order of
magnitude lower than those obtained for Re�1. The migration speeds, non-dimensionalized
with respect to the characteristic velocity Vygb=(2R|�T |�T=h)=[(2� + 3� int)(2 + � int=�)] [3],
are plotted versus the Marangoni number Ma in Figure 11. It must be noted, however, that
largest drops, after the transient initial phase, reach a migration velocity that is lower than that
of medium size drops subjected to the same temperature di�erence. This occurrence can be
explained by observing that the thermal �eld in the wall region remains almost unperturbed
in the case of small or medium drops while for largest drops the strati�ed temperature pro�le
near the walls is highly distorted by capillary convection, so that drops do not migrate as
in an unbounded medium of in�nite extent subjected to a temperature gradient uniform at
in�nity as shown in Figure 10(a).
At high Reynolds numbers the isotherms tend to fold over the drop. In the case R=0:75cm,

at about t=47 s for �T =40◦C and at t=38 s for �T =50◦C, the temperature ceases to
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Figure 11. Non-dimensional migration speed versus the external Marangoni number Ma.

Figure 12. Temperature (left) and concentration (right) �elds at t=58:8 s for R=0:75 cm, �T =40◦C.

decrease monotonically along the drop surface and the interface tension maximum ceases
to be located on the symmetry axis. This leads to the inversion of the direction of the
interface tension near the interface fore pole. The inverted �ow region grows rapidly and
gives rise to a second, counter-rotating, vortex within drop. The outer �uid in the front of
the drop is pushed up and the inner �uid is pushed down as clearly indicated by temperature
and concentration �elds of Figure 12 at t=58:8 s for �T =40◦C. The global trust due to
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capillary forces then reduces and the drop slows down. The development of this pattern is
probably due to the coarseness of the grid that should be re�ned to avoid the growth of such
disturbances. It must be taken into account, however, that a similar behaviour can also occur in
laboratory experiment, the thermal gradient being not perfectly strati�ed or the drop migrating
in a perturbed environment (f.i. the wake of a preceding drop), especially at high transport
numbers as the ones considered here. In some experiments on thermo-capillary migration of
bubbles and drops [7, 38, 39] migration was not observed or strong speed reduction of drops
migrating in the wake of a preceding drop have been reported [7]. These behaviours could
be explained in terms of a local inversion of the surface temperature gradient.
Information on �ow evolution is also provided by the concentration �eld, which is also

driven by dissolution. According to initial conditions and equilibrium curve, the concentration
decreases going from the inner phase to the inner surface of the drop and still decreases going
from the outer face towards the external phase. The internal vortical �ow that establishes after
the start-up, is characterized near the drop surface and along the axis by concentration values
lower than those of the ring vortex core. This is obviously due to the fact that the low
concentration masses of �uids are those that have been convected along the interface where
the concentration is �xed by the equilibrium curve, as clearly evidenced in Figure 10(b). The
concentration �eld follows the qualitative evolution of the thermal �eld even if the di�usion
of specie is sensibly lower than that of energy, the Schmidt numbers being larger than the
Prandtl numbers. Similarly, the outer capillary �ow drags more concentrated �uid masses in
the wake. The mass fraction distributions of Figure 10(b) show how, after a complete tour of
the �uid inside the drop, the inner low and outer high concentration regions become larger due
to the depletion or enrichment of the �uid along the interface, as one can see by observing
by the concentration distribution near the axis or in the wake. It must be noted that low
concentrated masses rising along the drop are convected downward by the vortex ring axis
before reaching the front pole and the interface.
As shown by the same �gure, the mass fraction of the external phase changes slightly

and in the wake only, due to the very low di�usion coe�cient and to the low values of the
concentration along the left branch of the equilibrium curve of Figure 1. As seen, the mass
fraction variations are instead appreciable within the drop, where the values change form the
initial unit ones, persisting on the vortex ring centre, to values lower than 0.7 at the drop inner
surface. Di�erently from the case of the mass �ow through the interface discussed below, no
conclusions on the sign of the concentration �ux can be drawn a priori, since the two terms of
Equation (38) are about of the same order of magnitude at the initial time. The positiveness
of the concentration �ux through the interface during migration is revealed by the already
noted increase of the concentration outside the drop and in the wake.
In the present problem the volume �ow through the drop interface is proportional to the

mass �ow, the phases being isodense and the �ow incompressible. The local mass �ow through
interface ṁ, according to Equation (7), is proportional to the di�erence of the concentration
normal derivatives and inversely proportional to the concentration jump, which depends on
the local temperature and goes to zero at the critical point. Thus, according to Figure 1, the
denominator of ṁ is always negative, the concentration of methanol being larger in inner
phase. An increase of temperature can cause an increase of the intensity of ṁ but not a
sign change. At initial time normal derivatives are both negative. The initial conditions and
the equilibrium curve make the inner normal derivative, in modulus, fairly larger than the
external one, of about an order of magnitude. This leads to the conclusion that at least
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Figure 13. Relative volume variation versus for R=0:25 (�), 0.5 (©), 0.75 ( ) cm and �T =40
(white symbols), 50 (black symbols) ◦C.

for short times the drop volume should increase. In absence of convection, volume variation
should occur in times of the order of the di�usive characteristic time R2=D and volume should
increase for quite long times. This initial portrait is in�uenced by two factors. The �rst is the
decrease of the inner concentration with increasing the temperature, which, according to the
equilibrium diagram, tends to increase the modulus of the inner (negative) normal derivative.
The second and opposite factor is the decrease of the average concentration within the drop
due to convection, by Marangoni e�ect, of low concentrated masses of �uid coming from
the interface and of their subsequent di�usion. This di�usive e�ect tends to reduce indirectly
the modulus of the inner derivative. Both these perturbations act in characteristic convective
times. These perturbations act also outside the drop. The (negative) external normal derivative
tends to increase in modulus, due to the increase in temperature, and is slightly a�ected by
Marangoni convection, since the external �ow comes from a region at constant concentration.
It is worthy to note that an exchange of inner and outer components should lead to an initial

volume decrease, and probably monotone in time, instead of an increase, ṁ being positive
at the initial time. The drop relative volume variation (v − v(0))=v(0) is plotted versus time
in Figure 13. The e�ect of dissolution on volume variation is quite limited except in the
case of small drops. Medium and large drops slightly grow while smaller drops grow faster.
This di�erent behaviour can be explained in terms of temperature and concentration pattern
evolution.
At start-up the drop cold core is wrapped by the warmer �uid dragged by interface tension

along its surface. Since the energy exchange by heat between the drop and the surrounding
phase is very small, the drop tends to stay cold. Accordingly, the external isotherms encoun-
tered by the drop during the ascent do not penetrate within the drop and fold over it. The drop
pushes the isotherms up and constrains them in a narrow thermal boundary layer, surrounding
the drop and having a steep normal temperature gradient, as shown in Figure 10(a). Therefore
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Figure 14. Concentration pro�les in planes passing through the drop centre of mass and inclined at
90, 0, −90◦, at t=42:6 s for R=0:25 cm, �T =40◦C (up) and R=0:5 cm, �T =40◦C (down).
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Figure 15. Temperature �elds at t=69:4 s, for �T =50◦C, R=0:25 cm (left) and at
t=50:3 s for R=0:5 cm, �T =50◦C (right).

the temperature on the drop surface does not change appreciably during the rise and remains
lower than the one corresponding to the unperturbed strati�ed pro�le at the actual height.
Correspondingly the concentration jump neither goes to zero neither decreases appreciably
and the mass �ow rate through the interface remains bounded also in the upper part of the
cavity, where the unperturbed temperature is higher than the critical one.
In Figure 14 the concentration pro�les in planes passing through the cell centre nearest to

the drop centre of mass and inclined at 90◦, 0◦, −90◦ with respect to the horizontal are plotted
for t=42:6s, R=0:25, 0.5 and �T =40◦C. Here the displacement of the interface position in
di�erent sections is mainly due to the fact that intersection planes are not exactly barycentric.
The remarkable di�erences in the concentration pro�les within the drop are due to the fact
that the ±90 pro�les lie along the axis, where the low concentration �uid coming from the
drop inner surface rises, pushed by the inner Marangoni �ow, while the 0◦ pro�le cuts the
high concentration region of the ring vortex core. The di�erence of the outer concentration
pro�les is due to the fact that the 90 and 0◦ pro�les extend in unperturbed regions while the
−90◦ pro�le extends in the wake.
By comparing the slopes at the interface one deduces that the mass �ow through the

interface is negative and that the drop tend to increase in volume. These two facts agree
with and explain the slow volume growth of medium and large drops. In the case of small
drops, instead, even if energy di�usion is quite limited, it is nevertheless su�cient to reduce
drop temperature, due to the reduced drop dimensions. This is shown in Figure 15. Here
the temperature �elds around a small and a medium drop at about the same height, for
�T =40◦, are compared. One must also consider that the migration of small drops is slower
and the drop has a larger time to adequate itself to the external conditions. The increase of the
drop surface temperature, through the concentration jump at the interface, leads to a volume
variation, shown in Figure 13, faster and larger than that of bigger drops.

11. CONCLUSIONS

In the present paper the thermo-solutal-capillary multiphase �ow of a binary mixture exhibiting
a miscibility gap is numerically investigated. A �xed grid level-set based algorithm is used
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in order to follow the drop motion allowing it to deform freely. A high order redistancing
algorithm is used to enhance the accuracy of the level-set approach. In order to obtain an
accurate evaluation of the volume production terms, coming from the level-set formulation
of the boundary conditions between di�erent phases, an algorithm is designed for the correct
location of distributions on the zero level-set, molli�cation, extension and �ltering of the
quantities related to such terms. It is noteworthy that in the present paper both tangential
stresses and mass �ow through the interface are considered. In order to simulate the dissolution
process, an algorithm having subcell resolution is set up for the mass fraction equation. It
allows accurate jumps description, has relaxed stability requirements and is able to calculate an
interface velocity depending on di�erence of normal derivatives of a discontinuous function.
Numerical simulations show that the interface jump is quite well resolved. The code models
both the transient start-up phase and the following quasi-steady migration, taking into account
the e�ects of boundary walls, for di�erent drop dimensions and applied thermal gradients.
The thermo-�uid dynamic �eld evolution is discussed on the basis of the obtained numerical
results.
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